Solve the differential equation dy/dx=(y^(1/2))*sin(x/2) to find y in terms of x.

Here, we must first rearrange our equation so all x terms are on one side and all y terms are on the other. Multiplying both sides by dx and diving both by y^(1/2) gives us y^(-1/2)dy = sin(x/2)dx, which is a directly integrable equation. Integrating both sides, we get 2y^(1/2) = -2cos(x/2) + c, where c is some arbitrary constant of integration. Rearranging to find y, we get y=(-2cos(x/2) + A)^2, where A=c/2.

Answered by Alex J. Maths tutor

6215 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you integrate ln x


How do you differentiate a polynomial?


Evaluate the integral of cos(x)sin(x)(1+ sin(x))^3 with respect to x.


find the value of x for when f(x)=0. f(x)=9x^(2)-4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences