Solve the differential equation dy/dx=(y^(1/2))*sin(x/2) to find y in terms of x.

Here, we must first rearrange our equation so all x terms are on one side and all y terms are on the other. Multiplying both sides by dx and diving both by y^(1/2) gives us y^(-1/2)dy = sin(x/2)dx, which is a directly integrable equation. Integrating both sides, we get 2y^(1/2) = -2cos(x/2) + c, where c is some arbitrary constant of integration. Rearranging to find y, we get y=(-2cos(x/2) + A)^2, where A=c/2.

AJ
Answered by Alex J. Maths tutor

7143 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve with equation y=f(x) passes through point P at (4,8). Given that f'(x)=9x^(1/2)/4+5/2x^(1/2)-4 find f(X).


It is given f(x)=(19x-2)/((5-x)(1+6x)) can be expressed A/(5-x)+B/(1+6x) where A and B are integers. i) Find A and B ii) Show the integral of this from 0 to 4 = Kln5


The complex conjugate of 2-3i is also a root of z^3+pz^2+qz-13p=0. Find a quadratic factor of z^3+pz^2+qz-13p=0 with real coefficients and thus find the real root of the equation.


A man travels 360m along a straight road. He walks for the first 120m at 1.5ms-1, runs the next 180m at 4.5ms-1, and then walks the final 60m at 1.5ms-1. A women travels the same route, in the same time. At what time does the man overtake the women?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning