Expanding a quadratic equation (x-3)(x-2)=0

Focus on the left hand side of the equation: (x-3)(x-2) These are two factors, basically that (x-3) is a number, and (x-2) is another number. (x-2)(x-3) is just showing that you're multiplying these numbers together. To multiply these numbers and hence expand the quadratic equation, multiply each bit of it individually. You can do it in a specific order to remember it easily: First: the first numbers of both of the brackets. Outer: the outer numbers of the brackets. Inner: the inner numbers of the brackets. Last: the last numbers which haven't been multiplied yet. This makes the acronym FOIL. In this case, the First is x * x = x^2. So start with x^2. Now add the Outer numbers, which are -3 * -2 = 6. In total now we have x^2 + 6. The Inner numbers are -3 * x = -3x. Add this to the total to give x^2 - 3x + 6. Finally, the Last numbers are x * -2 = -2x. Giving the total as: x^2 - 3x - 2x + 6 = x^2 - 5x + 6

Remember that this is only the left hand side of the equation, and that it equals 0, this doesn't change because you have expanded it. The expanded form of this equation means the exact same as the factorised form. Now the answer is: x^2 - 5x + 6 = 0

DW
Answered by Daniel W. Maths tutor

5975 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Sarah asked 20 people at a tennis tournament how they travelled there. She found that 13 of them travelled by car. Estimate how many of the total 2000 people at the tournament travelled by car.


A pen is the shape of an equilateral triangle. A goat is attached to a corner of the pen on a rope. The goat eats all the grass it can reach. It can just reach the opposite fence of the pen. What percentage of the grass in the pen does the goat eat?


The first three terms of a sequence are a, b, c. The term-to-term rule of the sequence is 'Multiply by 2 and subtract 4'. Show that c = 4(a – 3).


Sue has a cow farm. Her cows produced on average 25 litres of milk every day for 55 days. Sue bottles the milk in 1/2 litre bottles. How many bottles will Sue need to bottle all the milk.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning