Differentiate the function y = cos(sin(2x))?

To differentiate this function you will need the chain rule - differentiating what's inside the brackets and multiplying it by differentiating what's outside the brackets. In this case sin(2x) goes to 2cos(2x) and cos(sin(2x)) goes to - sin(sin(2x)). Therefore dy/dx = -2cos(2x)sin(sin2x)

GM
Answered by Greg M. Maths tutor

10481 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let R denote the region bounded by the curve y=x^3 and the lines x=0 and x=4. Find the volume generated when R is rotated 360 degrees about the x axis.


If y = sec(z)tan(z)/sqrt(sec(z)) then find the indefinite integral of y with respect to z.


Find the gradient of the tangent to the curve y=4x^2 - 7x at x = 2


Find the stationary points on the curve: y = x^3 + 3x^2 +2x+5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences