3x+5y=7 and 9x+11y=13. Solve to find the values of x and y that satisfy both equations.

As there are two unknowns we have to eliminate either the x or the y in order to be able to solve. You can see that in the first equation the x value is a multiple of the x value in the second equation. Therefore if we multiple the first equation by 3 we get the same amount of x. This gives us a new equation of 9x+15y=21. We can now subtract the second equation from the first so that we get 0x+4y=8 meaning y=2. Now that we know what y equals we can substitute it into either one of the equations we were given. For example 3x+5(2)=7 so 3x+10=7. Then we just solve this how we would do for a basic algebraic equation so 3x=-3 so x=-1. Therefore x=-1 and y=2. You can check these values are correct by substituting them into the second equation and they should give the answer.

GS
Answered by Georgina S. Maths tutor

4136 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A farmer has 30 boxes of eggs. There are 6 eggs in each box. Write, as a ratio, the number of eggs in two boxes to the total number of eggs. Give your answer in its simplest form.


David travels from home to work at 30 mph. At the end of the day, he travels from work back home via the same route at 40 mph. What is his average speed while travelling? (Give your answer as a simplified fraction) (None-Calculator)


Solve the following simultaneous equations: 2x - 3y = 16, x + 2y = -6


State the nth term of the following sequence: 3, 7, 11, 15, 19


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning