3x+5y=7 and 9x+11y=13. Solve to find the values of x and y that satisfy both equations.

As there are two unknowns we have to eliminate either the x or the y in order to be able to solve. You can see that in the first equation the x value is a multiple of the x value in the second equation. Therefore if we multiple the first equation by 3 we get the same amount of x. This gives us a new equation of 9x+15y=21. We can now subtract the second equation from the first so that we get 0x+4y=8 meaning y=2. Now that we know what y equals we can substitute it into either one of the equations we were given. For example 3x+5(2)=7 so 3x+10=7. Then we just solve this how we would do for a basic algebraic equation so 3x=-3 so x=-1. Therefore x=-1 and y=2. You can check these values are correct by substituting them into the second equation and they should give the answer.

GS
Answered by Georgina S. Maths tutor

4139 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Triangle ABC is a triangle with a right angle at vertex B. Length BC = 6cm and angle A = 30 degrees. How long is length AC?


Prove that √2 is irrational


Solve the following simultaneous equations: 4x + 5y = -8 and 6x-2y = 26


The equation of the line L1 is y=3x–2. The equation of the line L2 is 3y–9x+5=0. Show that these two lines are parallel.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning