Find the stationary points of the function y = (1/3)x^3 + (1/2)x^2 - 6x + 15

A stationary point is a point on the function where the gradient is zero. The phrase 'stationary point' coming up in a question always indicates that differentiation may be useful to solve it. In this case, the derivative of the function, often expressed as dy/dx, is x^2 + x - 6. As dy/dx is the gradient of the function, set it equal to zero to find stationary points. The easiest way to solve x^2 + x - 6 = 0 is by factorisation. So (x+3)(x-2)=0 gives the solutions x=2 , x=-3. Sub these back in to the original equation to find the corresponding y values. For x=2, y=23/3. For x=-3, y=57/2. The stationary points are therefore at (2, 23/3) and (-3,57/2).

Answered by Matthew H. Maths tutor

8296 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx of y=e^xcosx


Express the following as a partial fraction: (4x^2+12x+9) / (x^2+3x+2) .


How do I find the reultant force acting on an object sitting on a slope?


Express Cosx-3Sinx in form Rcos(x+a) and show that cosx-3sinx=4 has no solution MEI OCR June 2016 C4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences