What is the geometry of a ClF3 molecule? (AQA Unit 1 2015 1d)

Chlorine, Cl, and Florine, F are both in group 7 of the periodic table so they have 7 electrons in the outer energy level, called valence electrons. Each fluorine atom makes one covalent bond to the chlorine atom so 1 more electron is added to the outer energy level for each. Now there are 7 + 3 = 10 valence electrons. But each covalent bond is made by sharing a pair of electrons so dividing 10 by 2 gives the number of pairs of electrons. 10 / 2 = 5. So there are 5 pairs of valence electrons. The 5 pairs of electrons will arrange themselves around the atom to get as far apart as possible because they repel each other. This leads to a shape called a trigonal bipyramid which has angles of 90 and 120 degrees between bonds. However, there are only 3 bonds to other atoms so there must be 2 lone pairs. 5 - 3 = 2. The geometry will still be approximately the same but there will be some atoms missing from the shape. Lone pairs repel each other more than bonding pairs do, so they are placed furthest from other atoms. In the trigonal bipyramid shape this is in the triangle of the pyramid so the shape in the end is a t-shape with bond angles of 90 degrees.

EC
Answered by Eleanor C. Chemistry tutor

12619 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Explain why hydrogen bonding occurs between water molecules


What is the difference between an acid and a base?


There are two methods of ionisation in a time of flight spectrometer, name and explain one of these methods in detail.


Deduce which of Na+ and Mg2+ is the smaller ion. Explain your answer.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences