Simplify the surd sqrt(48)

When simplifying surd expressions we want to look for square numbers that are factors of the number inside the square root. If we list the square numbers (which are numbers that are the result of squaring another number) up to 48 we have 1, 4, 9, 16, 25 and 36 (1^2, 2^2, ... 6^2). Now we see that 1, 4 and 16 are all factors of 48. Choosing the highest we know that 16 x 3 = 48 so the surd becomes sqrt(16x3). Next, we know that the square root of 16 is 4 so we can apply this and take it outside of the square root giving 4*sqrt(3) (read as 4 root 3). This 4 comes from square rooting 16. As 3 cannot be split up into any more square factors, 4 root 3 is the final answer.

MH
Answered by Matthew H. Maths tutor

36694 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The first floor of an ancient japanese tower has 150 steps. Each floor above has 5 fewer floors than the previous. So, the second floor has 145 steps, the third 140 etc. How many floors does the tower have if the final floor has 30 steps leading to it.


Solve the equation to 2 two decimal places: (2x+3/x-4 ) - (2x-8/2x+1) = 1


Solve 3x - 5 < 16


Kelly is trying to work out the two values of w for which 3w-w^3=2. Her values are 1 and -1. Are her values correct?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning