Differentiate y = (x^2 + 3)^2

We have to use the chain rule here. If we set u to the inside of the bracket, u = x^2 + 3 and differentiating we get du/dx = 2x. Now the original expression becomes y = u^2. Differentiating this with respect to x, dy/dx = du/dx * dy/du using the chain rule. dy/du = 2u and du/dx is 2x so the final answer dy/dx = 2x*2(x^2 + 3) = 4x(x^2 + 3).

MH
Answered by Matthew H. Maths tutor

7694 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would I sketch the graph sin(x) + sin(2x - π/2) in my exam?


The straight line with equation y = 3x – 7 does not cross or touch the curve with equation y = 2px^2 – 6px + 4p, where p is a constant. Show that 4p^2 – 20p + 9 < 0.


How can I determine the stationary points of a curve and their nature?


Find the gradient of the tangent and the normal to the curve f(x)= 4x^3 - 7x - 10 at the point (2, 8)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning