Differentiate y = (x^2 + 3)^2

We have to use the chain rule here. If we set u to the inside of the bracket, u = x^2 + 3 and differentiating we get du/dx = 2x. Now the original expression becomes y = u^2. Differentiating this with respect to x, dy/dx = du/dx * dy/du using the chain rule. dy/du = 2u and du/dx is 2x so the final answer dy/dx = 2x*2(x^2 + 3) = 4x(x^2 + 3).

Answered by Matthew H. Maths tutor

6092 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is the derivative of 2^x not x*2^(x-1)?


Use the substitution u = cos 2x to find ∫(cos^2*(2x) *sin3 (2x)) dx


Express 6cos(2x)+sin(x) in terms of sin(x). Hence solve the equation 6cos(2x) + sin(x) = 0, for 0° <= x <= 360°.


What is the integral of x^2 + 3x + 7?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences