What is the maximum length a bungee rope with a spring constant of 100 Nm−1 can be for an 80kg man to be able to jump from 100m above a river without touching the water?

The key to solving this problem is realising that gravitational potential energy and elastic potential energy need to be equated. The gravitational potential energy of an object of mass m at height h above the Earth is equal to mgh. The elastic potential energy of a spring with spring constant k and extension x is 0.5kx^2. Equating these expressions gives mgh = 0.5kx^2. This assumes that all of the gravitational potential energy of the bungee jumper will be converted to elastic potential energy. To find the maximum extension of the rope, rearrange this expression to find x, giving x = (2mgh/k)^0.5. Substituting in the values given in the question gives the extension of the rope to be x = (2 x 80 x 9.81 x 100/100)^0.5 = 39.62m. To find the maximum original length the rope can be without the jumper touching the water, just subtract this extension from the height at which the jumper is jumping from, giving 100 - 39.62 = 60.38m. Therefore, the rope can be a maximum of 60.38m long for the jumper to be able to jump from 100m above the river and not touch the water.

Answered by Samuel J. Physics tutor

12183 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Two electrons are a distance r apart, the first electron exerts a force F on the second electron. a) What force does the second electron exert on the first? b) In terms of r, at what distance is the force that the first electron exerts on the second F/9?


In a circuit with a thermistor and bulb, what happens to the brightness of the bulb as the temperature increases?


A supertanker of mass 4.0 × 10^8 kg, cruising at an initial speed of 4.5 m s^(–1), takes one hour to come to rest. Assume the force slowing down the tanker is constant.


Explain why a jet fighter pilot experiences "weightlessness" when at the top of a loop-the-loop manoeuvre.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences