Find the modulus-argument form of the complex number z=(5√ 3 - 5i)

The easiest way to complete questions of these types is to first sketch an Argand diagram. With 5√ 3 on the x (real) axis and -5 on the y (imaginary) axis, the modulus would be calculated simply by using pythagoras's theorem. Thus, the modulus of z would be equal to √((5√3)² + 5²) = √(75+25) = √100 = 10. The argument is then found as the angle between the real axis and the vector of the complex number. This can once again be calculated with trigonometry. As we know the magnitude of all three edges of the triangle, any of sin cos and tan operations can be used. In this example, i will compute it using tan. thus, tan(θ)=opp/adj = Imimaginary/real components = -5/(5√3) therefore arg(z)=arctan(-1/√3), which gives a value of -30° or -π/6 once we have both the modulus and the argument of the complex number, expressing it in modulus-argument form is straightforward. the complex number z= |z|((cos(arg(z) + isin(arg(z))) = 10(cos(-π/6) + isin(-π/6) ).

Related Further Mathematics A Level answers

All answers ▸

Solve for z in the equation sin(z) = 2


A 1kg ball is dropped of a 20m tall bridge onto tarmac. The ball experiences 2N of drag throughout its motion. The ground has a coefficient of restitution of 0.5. What is the maximum height the ball will reach after one bounce


A curve has equation y=(2-x)(1+x)+3, A line passes through the point (2,3) and the curve at a point with x coordinate 2+h. Find the gradient of the line. Then use that answer to find the gradient of the curve at (2,3), stating the value of the gradient


Find the eigenvalues for the matrix (4/2/3,2/7/0,-2/1/8)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences