find the coordinate of the maximum value of the function f(x) = 9 – (x – 2)^2

Firstly you would start by differentiating the function and equating it to zero as the gradient of the function at the maximum point is zero. to differentiate this function you would use the chain rule since it is in the form f(x)=h(g(x)). -2(x-2) = 0 then you can see that the only solutions to this equation is when x = 2 so you plug that back into the equation to get : y = 9 - (2-2)^2 = 9 so coordinate is (2,9).

SB
Answered by Sruthi B. Maths tutor

3833 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the gradient of this curve y=5x^3+6x^2+7x+8 at point x=3?


How do I differentiate a quadratic to the power n?


When do I use the product rule as opposed to the chain rule?


Find the stationary points of the equation. f(x)=3x^2+4x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning