Given a projectile is launched, from rest, at an angle θ and travels at a velocity V, what is the range and path of motion of the projectile? (Ignore air resistance.)

First, find the formula for the time taken, t, for the projectile to travel the distance. Using the fact that the projectile reaches a velocity of zero at a time of 0.5t when at its maximum height and acceleration due to gravity is negative, the time of flight is dependent on vertical values so; v=u+at => 0=Vsinθ-g(0.5t) => t=(2Vsinθ)/g. Now for the range, also know as maximum displacement, substitute the time taken into the distance, x, formula with horizontal values; x=ut => x=Vcosθt => x(max)=Vcosθ((2Vsinθ)/g)) => x(max)=Range=(2sinθcosθ(V)^2)/g. Using trigonometric identity sin2θ=2sinθcosθ, we have Range=(sin2θ(V)^2)/g. To find the motion of the projectile, use the equation for displacement s=ut+0.5a(t)^2, therefore in vertical terms y=Vsinθ(t)-0.5g(t)^2, and thus insert the horizontal time taken which is derived from x=Vcosθt => t=x/Vcosθ, so the path the projectile follows on the x-y plane is y=Vsinθ(x/Vcosθ)-(0.5g(x)^2)/(Vcosθ)^2. Tidying this up, and using the fact that secθ=1/cosθ and tanθ=sinθ/cosθ; this means y=xtanθ-g((xsecθ)^2)/2(V)^2. Since the equation is in the form y=ax-bx^2, for some a,b, the motion of the projectile must be parabolic. And we are done.

Answered by Oskar D. Physics tutor

5288 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Whats the effective resistance in a parallel and series circuit with a cell and two 12 ohms resistors ?


Calculate the threshold frequency for a metal with a work function of 3eV


This Question is a multi-parter but all around the same scenario. Similar to an end of paper A-level physics question.


An ideal gas within a closed system undergoes an isothermal expansion from an initial volume of 1m^3 to 2m^3. Given that the initial pressure of the gas is 10^5 Pa, find the final pressure of the gas following the expansion.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences