Find the general solution for the determinant of a 3x3 martix. When does the inverse of this matrix not exist?

Let M be a 3x3 matrix s.t. M= |a b c| |g h i| |d e f|

Then Det(M)= a(Det(e,f,h,i))-b(Det(d,f,g,i))+c(Det(d,e,g,h).

Given that the determinant of a 2x2 matrix such as (e,f,h,i) is = ei-fh. The solution is; Det(M)=a(ei-fh)-b(di-fg)+c(dh-eg).

Since the inverse of a matrix, M^-1 = 1/Det(M) * Adj(M), the inverse does not exist when Det(M)=0.

Related Further Mathematics A Level answers

All answers ▸

Solve the equation 2(Sinhx)^2 -5Coshx=5, giving your answer in terms of natural logarithm in simplest form


By Differentiating from first principles, find the gradient of the curve f(x) = x^2 at the point where x = 2


Find the general solution to the second order differential equation x'' - 2x' + x = e^(2t).


How do I sketch accurate graphs for rational functions in a short amount of time? (I.e. A step by step guide of sketching graphs)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences