Find the general solution for the determinant of a 3x3 martix. When does the inverse of this matrix not exist?

Let M be a 3x3 matrix s.t. M= |a b c| |g h i| |d e f|

Then Det(M)= a(Det(e,f,h,i))-b(Det(d,f,g,i))+c(Det(d,e,g,h).

Given that the determinant of a 2x2 matrix such as (e,f,h,i) is = ei-fh. The solution is; Det(M)=a(ei-fh)-b(di-fg)+c(dh-eg).

Since the inverse of a matrix, M^-1 = 1/Det(M) * Adj(M), the inverse does not exist when Det(M)=0.

OD
Answered by Oskar D. Further Mathematics tutor

4133 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

f(x)=ln(x). Find the area underneath the curve f(x) between 1 and 2.


Prove by induction that the sum of the first n integers can be written as (1/2)(n)(n+1).


What is the root of i? give all solutions


Solve this equation: x^2 + 2x + 2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences