A line L is parallel to y=4x+5 and passes through the point (-1, 6). Find the equation of the line L in the form y=ax+b . Find also the coordinates of its intersections with the axes.

Since L is parallel to y=4x+5 we know that the two lines have the same gradient. The gradient of a line in the form y=ax+b has is a, which means the gradient of y=4x+5 is 4, so L is y=4x+b and we just need to find b. L passes through the point (-1,6) so this point must satisfy the equation. Substituting the point into y=4x+b gives 6=4(-1)+b, which we can rearrange to give b=10. So we've found the equation for L: y=4x+10. Now to find where L intersects the axes, starting with the y-axis. The x-coordinate of any point on the y-axis is 0, so to find the y-coordinate we can plug x=0 into the equation to give y=4(0)+10=10. So L crosses the y-axis at the point (0,10). Similarly, we can find the x-coordinate of the intersection with the x-axis by taking y=0 and substituting this into the equation, giving 0=4x+10, so 4x=-10, and x=-10/4. So L crosses the x-axis at (-10/4,0).

Answered by Matt M. Maths tutor

11152 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x) = 2x3 – 5x2 + ax + 18 where a is a constant. Given that (x – 3) is a factor of f(x), (a) show that a = – 9 (2) (b) factorise f(x) completely. (4) Given that g(y) = 2(33y ) – 5(32y ) – 9(3y ) + 18 (c) find the values of y that satisfy g(y) = 0, givi


Solve the following equation: 5x - 1 = 3x + 7


How can I improve my score?


Consider the curve y=x/(x+4)^0.5. (i) Show that the derivative of the curve is given by dy/dx= (x+8)/2(x+4)^3/2 and (ii) hence find the coordinates of the intersection between the left vertical asymptote and the line tangent to the curve at the origin.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences