What is the de Broglie wavelength of a dust particle that has a mass of 1e-10 kg and a velocity of 0.05m/s?

From the question asked, we need to identify the key bits of information.

Firstly, we are asked to find the de Broglie wavelength, so we write down the de Broglie relation:

lambda = h/p

In this equation we want to find the wavelength lambda, and we know h is Planck's constant, h = 6.63e-34 Js. So the remaining term we need to determine is p, the momentum.

In order to find the momentum, we use the relation p=m*v, using the mass and velocity given in the question.

We can now calculate the wavelength by plugging p into the de Broglie formula.

lambda = 1.33e-22 m

Answered by Josh H. Physics tutor

7457 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A person swims from a depth of 0.50 m to a depth of 1.70 m below the surface of the sea. density of the sea water = 1030 kg/m^3 gravitational field strength = 9.8 N/kg Calculate the increase in pressure on the swimmer. Give the Unit.


Single electrons travelling at 550 ms^-1 are passed through a diffraction grating with a spacing between the slits of 2.5 micrometers. What would the angle between the zeroth and first maximum of the resulting interference pattern be?


A ball is thrown up with an initial velocity of 8 m/s and initial height of 1.5m above the ground. Calculate the maximum height the ball reaches and the time it takes to get there.


How do we know the energy of a photon (light particle) is quantised?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences