Find the derivative of the curve e^(xy) = sin(y)

First we have to identify that implicit differentiation is used to solve this question. We can differentiate the first the LHS first, by using the chain rule, we know that the differentiation of e^(xy) is e^(xy) times the differentiation of (xy). This becomes (y + xy') by using implicit differentiation. Sin(y) differentiates into y'cos(y). Rearranging the equation to get y' as the subject gives you (ye^(xy))/((cos(y)+xe^(xy))

GG
Answered by Gouri G. Maths tutor

8004 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A geometric progression has first term 3 and second term -6. State the value of the common ratio.


2 log(x + a) = log(16a^6) where a is a positive constant. How do I find x in terms of a?


Using the substitution x = 2cosu, find the integral of dx/((x^2)(4-x^2)^1/2), evaluated between x=1 and x=sqrt(2).


Find all solutions to the trig equation 2sin(x)^2 + 3sin(x) - 2 = 0 in the range 0 <= x <= 360 degrees


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning