Can you explain where the "Integration by parts" formula comes from?

Sure. If you remember how to calculate d/dx(uv) then you can understand how integration by parts works. d/dx(uv) = u(dv/dx) + v(du/dx). we can re-arrange this: u(dv/dx) = d/dx(uv) - v(du/dx). Now integrating both sides: |u.dv = uv - |v.du (Where I've used "|" for the integration sign) which is the integration by parts formula.

All you need to do is work out what you use as "u" and "dv", which comes down to experience.

CF
Answered by Christian F. Maths tutor

3887 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

C and D are two events such that P(C) = 0.2, P(D) = 0.6 and P(C|D) = 0.3. Find P(D|C), P(C’ ∩ D’) & P(C’ ∩ D)


Use logarithms to solve the equation 2^(n-3) = 18000, giving your answer correct to 3 significant figures.


How do you integrate y = 4x^3 - 5/x^2?


The curve y = 2x^3 - ax^2 + 8x + 2 passes through the point B where x=4. Given that B is a stationary point of the curve, find the value of the constant a.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning