How would I find the approximate area enclosed by the expression e^x*sin(x)*x^3 on an infinite scale?

The area under a curve is analytically calculated using the integral of the function. The integral of the function above could be calculated using integration by parts twice, considering that 3 functions are multiplied together, this could messy and a bit tricky. To work out an approximate area the shapes of the individual graphs of e^x, sin(x) and x^3 can be considered individually.

Sin(x) oscillates between 1 and -1 continuously, meaning that the area under the curve above and below the x axis will be approximately equal and opposite (positive for above the x axis and negative for below) on an infinite x axis resulting in the area under the curve being approximately zero.

The same goes for the graph of x^3. Where x is positive so are the y coordinates, where x is negative the y coordinates follow suit, meaning that the areas above and below the x axis will be approximately equal again, cancelling one another out.

Therefore, the only integral that actually needs to be considered is the area under y=e^x, which is y=e^x.

Answered by Matthew W. Maths tutor

2683 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that: y = 3x^2 + 6x^1/3 + (2x^3 - 7)/(3x^1/2), x > 0 Find dy/dx, give each term in its simplest form


y' = (2x)/(y+1). Solve for y.


Write down the coordinates of the centre and the radius of the circle with equation x^2+y^2-4x-8y+11=0


The line AB has equation 5x + 3y + 3 = 0. The line AB is parallel to the line y = mx + 7. Find the value of m.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences