How would I find the approximate area enclosed by the expression e^x*sin(x)*x^3 on an infinite scale?

The area under a curve is analytically calculated using the integral of the function. The integral of the function above could be calculated using integration by parts twice, considering that 3 functions are multiplied together, this could messy and a bit tricky. To work out an approximate area the shapes of the individual graphs of e^x, sin(x) and x^3 can be considered individually.

Sin(x) oscillates between 1 and -1 continuously, meaning that the area under the curve above and below the x axis will be approximately equal and opposite (positive for above the x axis and negative for below) on an infinite x axis resulting in the area under the curve being approximately zero.

The same goes for the graph of x^3. Where x is positive so are the y coordinates, where x is negative the y coordinates follow suit, meaning that the areas above and below the x axis will be approximately equal again, cancelling one another out.

Therefore, the only integral that actually needs to be considered is the area under y=e^x, which is y=e^x.

Answered by Matthew W. Maths tutor

2631 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

It is given f(x)=(19x-2)/((5-x)(1+6x)) can be expressed A/(5-x)+B/(1+6x) where A and B are integers. i) Find A and B ii) Show the integral of this from 0 to 4 = Kln5


The curve C has the equation 4x^2 - y^3 - 4xy + 2y = 0 . The point P with coordinates (-2, 4) lies on C. Find the exact value of dy/dx at the point P.


Split the following expression into partial fractions of the form A/(x-3) + B/(4x+2) : (19x-15)/(4x+2)(x-3)


Given that y = (1 + 3x^2)^(1/3) , use the chain rule to find dy/dx in terms of x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences