How would I derive Kepler's third law from Newton's law of gravitation and the equations of circular motion?

Kepler's third law states that the square of the period of the orbit is directly proportional to the cube of the radius of the orbit (T^2=kr^3) where r is some constant to be determined. This can be determined using:

Newton's law of gravitation: F=GMm/r^2 Centripetal Force: F=mw^2r, where w is the angular velocity in rad/s.

By equating these 2 equations and cancelling out any terms possible we arrive at GM=r^3w^2. The angular velocity can be described as the angle a body has travelled through in a period of time. Assuming a full circular orbit this would be equal to 2pi radians in a period of T. Therefore w=2pi/T. This can be substituted in to obtain T^2=(4*pi^2/GM)*r^3. Therefore the constant of proportionality equals 4pi^2/GM.

Answered by Matthew W. Physics tutor

6259 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A cannon is fired at 30 degrees from the ground and the cannonball has initial velocity of 15 m/s. What is the height of the highest point the cannonball reaches and how far is this point horizontally from the cannon?


what is the scape velocity?


What is the Centripetal force, and how does it keep objects in circular motion?


How do you work out the work out the current through resistors in parallel?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences