How would I derive Kepler's third law from Newton's law of gravitation and the equations of circular motion?

Kepler's third law states that the square of the period of the orbit is directly proportional to the cube of the radius of the orbit (T^2=kr^3) where r is some constant to be determined. This can be determined using:

Newton's law of gravitation: F=GMm/r^2 Centripetal Force: F=mw^2r, where w is the angular velocity in rad/s.

By equating these 2 equations and cancelling out any terms possible we arrive at GM=r^3w^2. The angular velocity can be described as the angle a body has travelled through in a period of time. Assuming a full circular orbit this would be equal to 2pi radians in a period of T. Therefore w=2pi/T. This can be substituted in to obtain T^2=(4*pi^2/GM)*r^3. Therefore the constant of proportionality equals 4pi^2/GM.

MW
Answered by Matthew W. Physics tutor

9153 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the difference between internal energy, temperature, and heat?


A bungee jumper of mass 160kg falls from a cliff. The bungee cord has a natural length of 5.0m and a stiffness constant of 3.0N/m. The air resistance is a constant force of 4.0N, what's the speed of the jumper when the total length of cord is 5.9m?


During take-off from earth, an astronaut of mass 76kg has an area of contact with his seat of 0.095m^2. Calculate the average pressure on the seat when the upward acceleration of the rocket is 47ms^-2


What is the Strong Nuclear Force?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning