The expansion of (1+x)^4 is 1 + 4x +nx^2 + 4x^3 + x^4. Find the value of n. Hence Find the integral of (1+√y)^4 between the values 1 and 0 (one top, zero bottom).

Using Binomial expansion or Pascal's triangle, expand (1+x)^4 to get 1+4x+6x^2+4x^3+x^4. Then, by substituting √y for x, get 1 + 4y^1/2 + 6y +4y^3/2 +y^2. Then, using the rules of integration, the expansion is integrated to y + 8/3y^3/2 + 3y^2 + 8/5y^5/2 + 1/3y^3 between the bounds 1,0. substituting in the values gives [1 + 8/3 + 3 + 8/5 + 1/3] - = 7 + 8/5 = 8.6.

TD
Answered by Tutor41123 D. Maths tutor

6424 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How many solutions are there to the equation sin x = a, if 0<a<1 and 0<x<pi


Solve the equation 2x^3 - 5x^2 - 4x + 3 = 0.


Let X be a normally distributed random variable with mean 20 and standard deviation 6. Find: a) P(X < 27); and b) the value of x such that P(X < x) = 0.3015.


Express cos(2x) in the form acos^2(x) + b, where a and b are constants.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning