Solve the differential equation dy/dx = y/x(x + 1) , given that when x = 1, y = 1. Your answer should express y explicitly in terms of x.

Rearrange differential equation to get 1/x(x+1) dx = 1/y dy. Separate x side into partial fractions where 1/x(x+1) = 1/x - 1/(x+1). Integrate each side. Resulting equation involves natural logs. Substitute in boundary conditions (known values of x and y) to find a value for the integration constant. Simplify the equation on the x side using standard log rules. Raise e to the power of each side of the equation to remove natural logs. Hence, y=2x/(x+1).

AT
Answered by Alexander T. Maths tutor

16980 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y^3 + 3y^2 + 5


How do you show that two lines do, or do not intersect?


The polynomial p(x) is given by p(x)=x^3 - 5x^2 - 8x + 48. Given (x+3) is a factor of p(x), express p(x) as a product of 3 linear factors.


If y=5x+4x^3, find dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning