Solve the differential equation dy/dx = y/x(x + 1) , given that when x = 1, y = 1. Your answer should express y explicitly in terms of x.

Rearrange differential equation to get 1/x(x+1) dx = 1/y dy. Separate x side into partial fractions where 1/x(x+1) = 1/x - 1/(x+1). Integrate each side. Resulting equation involves natural logs. Substitute in boundary conditions (known values of x and y) to find a value for the integration constant. Simplify the equation on the x side using standard log rules. Raise e to the power of each side of the equation to remove natural logs. Hence, y=2x/(x+1).

Answered by Alexander T. Maths tutor

15484 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is ꭍ2x=x^2+C?


How do I differentiate?


A curve has equation y = 20x −x^2 −2x^3 . Find its stationary point(s).


Find the equation of the tangent to the circle x^2 + y^2 + 10x + 2y + 13 = 0 at the point (-3, 2)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences