Solve the differential equation dy/dx = y/x(x + 1) , given that when x = 1, y = 1. Your answer should express y explicitly in terms of x.

Rearrange differential equation to get 1/x(x+1) dx = 1/y dy. Separate x side into partial fractions where 1/x(x+1) = 1/x - 1/(x+1). Integrate each side. Resulting equation involves natural logs. Substitute in boundary conditions (known values of x and y) to find a value for the integration constant. Simplify the equation on the x side using standard log rules. Raise e to the power of each side of the equation to remove natural logs. Hence, y=2x/(x+1).

Answered by Alexander T. Maths tutor

15304 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate with respect to x: w=4x^2 + 3sin(2x)


Sketch the curve y = (2x-1)/(x+1) stating the equations of any asymptotes and coordinates of the intersection with the axis. As an extension, what standard transformations from C1 could you use on y=1/x to get this curve?


Use integration by parts to find the integral of ln x by taking ln x as the multiple of 1 and ln x


How do I differentiate (2x+1) / (3x^2 - 5)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences