Solve the differential equation dy/dx = y/x(x + 1) , given that when x = 1, y = 1. Your answer should express y explicitly in terms of x.

Rearrange differential equation to get 1/x(x+1) dx = 1/y dy. Separate x side into partial fractions where 1/x(x+1) = 1/x - 1/(x+1). Integrate each side. Resulting equation involves natural logs. Substitute in boundary conditions (known values of x and y) to find a value for the integration constant. Simplify the equation on the x side using standard log rules. Raise e to the power of each side of the equation to remove natural logs. Hence, y=2x/(x+1).

AT
Answered by Alexander T. Maths tutor

16343 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the inverse of a 2x2 matrix


The curve C has the equation: y=3x^2*(x+2)^6 Find dy/dx


Let p(x) = 30 x^3 -7 x^2 - 7 x + 2. Prove that (2x + 1) is a factor of p(x) and factorise p(x) completely.


How do you integrate by parts?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning