Top answers

Further Mathematics
A Level

How do I convert cartesian coordinates into polar coordinates?

Polar coordinates are expressed in the form (r,θ), where r is the distance of the point, P, from the origin, and θ (usually expressed in radians) is the angle between the line joining the point to the ori...

Answered by Gwen W. Further Mathematics tutor
2908 Views

Find roots 'a' and 'b' of the quadratic equation 2(x^2) + 6x + 7 = 0

We know to find roots of any quadratic equation we use the quadratic formula, [-b +- (b^2 - 4ac)^(1/2)]/2a where a=2, b=6, and c=7.

Plug these values in and we obtain, [-6 +- (-20)^(1/2)]/4. [Remem...

Answered by Sam N. Further Mathematics tutor
2572 Views

Find the solution the the differential equation d^2y/dx^2 + (3/2)dy/dx + y = 22e^(-4x)

We first find the complementary function by guessing y=e^(kx). Substituting this into the equation d^2y/dx^2 + (3/2)dy/dx + y = 0. we find k^2 + (3/2)k + 1 = 0 which factorises into (k+2)(k+1/2). So our c...

Answered by Nathan E. Further Mathematics tutor
6637 Views

Given sinhx = 0.5(e^x - e^-x), express its inverse, arcsinhx in terms of x.

The first step is to write sinhx in its exponential form and set it equal to y, this will make rearranging easier. Then multiply everything by e^x and rearrange to form a quadratic, in terms of e^x. Expre...

Answered by Kai A. Further Mathematics tutor
3003 Views

The finite region bounded by the x-axis, the curve with equation y = 2e^2x , the y-axis and the line x = 1 is rotated through one complete revolution about the x-axis to form a uniform solid. Show that the volume of the solid is 2π(e^2 – 1)

The volume of revolution, V, is given as 2π∫ydx Substituting in the equation and limits gives as follows: V = 2π∫2e^2x dx between 0 and 1 Integrating this gives V = 2π[e^2x] between 0 and 1 Applying the ...

Answered by Michael C. Further Mathematics tutor
6746 Views

We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences