Top answers

Maths
A Level

Differentiate xe^2

Use product rule. d(uv)/dx = u dv/dx +v du/dxu=x du/dx=1v=e^x dv/dx=e^x
d(xe^x)/dx = xe^x + e^x.1 = e^x(x+1)

Answered by George B. Maths tutor
3724 Views

A curve, C, has equation y =(2x-3)^5. A point, P, lies on C at (w,-32). Find the value of w and the equation of the tangent of C at point, P in the form y =mx+c.

To find the value of w, let x = w and y = -32. Substitute these values into the equation of the curve, C: y = (2x-3)^5 => -32 = (2(w) - 3 )^5. Note: the symbol, =>, means "implies that." F...

Answered by Lewis M. Maths tutor
3397 Views

A curve has equation y = f(x) and passes through the point (4, 22). Given that f ′(x) = 3x^2 – 3x^(1/2) – 7, use integration to find f(x), giving each term in its simplest form.

Firstly we can use the difference rule to split f'(x) into three components which we can consider separately. Then using the knowledge that the integral of x^n is 1/(n+1)*x^(n+1) we get the expression for...

Answered by Abbey S. Maths tutor
3272 Views

y = 4x/(x^2+5). a) Find dy/dx, writing your answer as a single fraction in its simplest form. b) Hence find the set of values of x for which dy/dx < 0

a) We need to differentiate this equation using the quotient rule (Given that it is a fraction with an x term on both the top and bottom of the fraction). We assign the numerator and denominator as follow...

Answered by James F. Maths tutor
6460 Views

A curve has parametric equations: x=(t-1)^3 and y= 3t - 8/(t^2). Find dy/dx in terms of t. Then find the equation of the normal at the point on the curve where t=2.

dx/dt = 3(t-1)2dy/dt = 3 + 16t-3dy/dx=(dy/dt)(dt/dx) dy/dx = 3 + 16t-3 / 3(t-1)2
At t=2 dy/dx= (3 + 16/8) / 3 = 5/3 Gradient of the normal = -3/5with t=2 y...

Answered by Jasmin H. Maths tutor
3091 Views

We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences