Top answers

Maths
A Level

Differentiate: f(x)=2(sin(2x))^2 with respect to x, and evaluate as a single trigonometric function.

f(x) = 2sin2(2x)Therefore, using the chain rule: f'(x)=2 x 2cos(2x) x 2sin(2x)(The 2 at the front arises from the constant 2, at the start of f(x), the 2cos(2x) comes from differentiating sin

SH
Answered by Sam H. Maths tutor
5215 Views

The function f(x) is defined by f(x) = 1 + 2 sin (3x), − π/ 6 ≤ x ≤ π/ 6 . You are given that this function has an inverse, f^ −1 (x). Find f^ −1 (x) and its domain

To find inverse functions we swap the variables of the function we are taking the inverse of. let y=1+2sin(3x)so now, x=1+2sin(3y)Aiming to make y the subject, x-1= 2sin(3y)Therefore, (x-1)/2=sin(3y), ...

HC
Answered by Harry C. Maths tutor
9440 Views

y = 4sin(x)cos(3x) . Evaluate dy/dx at the point x = pi.

By product rule:u = 4sin(x) v = cos(3x)du/dx = 4cos(x) dv/dx = -3sin(3x)dy/dx = u (dv/dx) + v (du/dx)dy/dx = 4sin(x) * -3sin(3x) + cos(3x) * 4cos(x)dy/dx = -12sin(x)sin(3x) + 4cos(x)cos(3x)Evaluate at x =...

WF
Answered by Will F. Maths tutor
4397 Views

What is a logarithm?

We can explain this by taking a simple power equation such as 23 = 8 and setting each number as an unknown variable. For instance 23 = x is solved by cubing 2, x3 = 8 is s...

DW
Answered by Daniel W. Maths tutor
3398 Views

Use integration to find the exact value of [integral of] (9-cos^2(4x)) dx

  1. you cannot integrate cos^2(4x) without making substitutions first. Use the cos^2(x) + sin^2(x) = 1 identity with the cos(2x)=cos^2(x)-sin^2(x), rearrange to get the identity cos(2x) = 2cos^2(x) - 1,...
AF
Answered by Anna F. Maths tutor
7501 Views

We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning