Top answers

Maths
A Level

The curve C has the equation ye ^(–2x) = 2x + y^2 . Find dy/dx in terms of x and y.


differentiate both side with respect to x : (dy/dx)e^(-2x)+y(-2e^(-2x)) = 2+2y(dy/dx)
rearrange it : (-2y+e^(-2x))(dy/dy) = 2 + 2ye^(-2x) ==> dy/dx = ( 2 + 2ye^(-2x) ) / ( -2y+e^(-2x) )

Answered by Jimmy C. Maths tutor
4780 Views

Integration of ln(x)

Let f denote an integral sign, I will write the integrand in square brackets. We can use integration by parts to integrate ln(x), the "trick" here is to imagin ln(x) as 1 x ln(x). Integ...

Answered by Amelia S. Maths tutor
2541 Views

Use integration by parts to find the value of the indefinite integral (1/x^3)lnx ; integration with respect to dx

Let f denote an integral sign, I will write the integrand in square brackets. The formula for integration by parts is given by:f [(u)(dv/dx)]dx = uv - f [((du/dx)(v)]dxTo apply ...

Answered by Amelia S. Maths tutor
7834 Views

Integrate 2sin^3(x)+3.

First we need to use trigonometric identities to convert the sin^3(x) to a single power. This is because we cannot integrate trigonometric functions that are above the power of 1. We need to use the doubl...

Answered by Vaidik P. Maths tutor
4033 Views

A curve with equation y=f(x) passes through the point (1, 4/3). Given that f'(x) = x^3 + 2*x^0.5 + 8, find f(x).

We know that f'(x) = x^3 + 2*x^0.5 + 8, and we can integrate both sides. This gives us f(x) = (1/4)*x^4 + (4/3)x^(3/2) + 8x + c, remembering to add the constant of integration. Now, we are almost...

Answered by George C. Maths tutor
5954 Views

We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences