Top answers

Maths
A Level

Starting from the fact that acceleration is the differential of velocity (dv/dt = a) derive the SUVAT equations.

Intergrating with respect to time, you get that v = u + at. Knowing that velocity is just the rate of change of your position ds/dt = v, and sustituting the previous expression for v, you get ds/dt = u + ...

Answered by Ben W. Maths tutor
4982 Views

Using integration by parts, and given f(x) = 3xcos(x), find integrate(f(x) dx) between (pi/2) and 0.

We begin by quoting the integration by parts formula, as the question speciaficaly asks us to use it.

integrate(u(x) v'(x) dx)|^(b)(a) = [u(x) v(x)]^(b)(a) - integrate(u'(x) v(x) dx)|^(b)_...

Answered by Aaron C. Maths tutor
3076 Views

integrate by parts ln(x)/x^3

The question states to use integration by parts. So first we recall the integration by parts formula is integrate(u(x)v'(x)  dx)=     (v(x)u(x))    -    integrate(u'(x)v(x)   dx)+c...

Answered by Prit S. Maths tutor
3056 Views

Given that the equation of the curve y=f(x) passes through the point (-1,0), find f(x) when f'(x)= 12x^2 - 8x +1

Firstly, Integrate the f'(x) equation by raising the power by 1 and then dividing by the new power and adding a constant c. This gives you f(x)=(12x^3)/3 -(8x^2)/2 + x + c Then you simplify, f(x)=4x^3 -4x...

Answered by Daniel M. Maths tutor
12871 Views

If f(x)= ( ((x^2) +4)(x-3))/2x find f'(x)

Tackle differentiation questions in two parts: First put it into the simplest for possible for differenciation, then perform the differenciation. 

So for this equation you should first expand the t...

Answered by Alex B. Maths tutor
3228 Views

We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences