Top answers

Maths
GCSE

Line L1 passes through points (4,6) and (12,2). Line L2 passes through the origin and has gradient -3. The two lines intersect at point P. Find the co-ordinates of P.

Gradient of L1 : Gradient = Change in y/ Change in x. Gradient = (2-6)/(12-4)= -1/2
Gradient is "m" in y=mx+cPlug in a point to determine c : 6 = -1/2 *4 + c --> c =8 L1 is ...

Answered by Bjorn L. Maths tutor
5160 Views

Using the quadratic formula find the solutions for x^2+x-6

By subbing in a=1 b=1 and c=-6 into the quadratic formula, you should get two solutions of x which are x = 2 and x = -3

Answered by Loretta O. Maths tutor
2069 Views

Write x^2 + 4x - 16 in the form (x+a)^2-b

Concentrate on the x^2+4x. Halve the 4 or any number that occupies that space. Equals 2 in this case. Put (x+2)^2 and that is your first term. Expand the brackets= x^2 + 4x + 4. Don't want the extra + 4 a...

Answered by Lucy B. Maths tutor
7664 Views

a=7 and b=2, Work out the value of (a/b)-a^b

(7/2) - 72(7/2) - (98/2)= -(91/2)

Answered by Lauren P. Maths tutor
7198 Views

Here is a list of numbers: 15, 9, 12, 13, 6, 15, 18, 10, 11, 21. Find the mean, median and the mode.

To find the mean, we add all the numbers and divide by how many numbers there are. 15+9+12+13+6+15+18+10+11+21 = 130130/10 = 13The mean is 13.To find the median, we first arrange the numbers into order: ...

Answered by Danielle H. Maths tutor
3478 Views

We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences