Top answers

Further Mathematics
All levels

How would go about finding the set of values of x for which x+4 > 4 / (x+1)?

Whenever you see a problem involving an inequality (greater than or less than sign) it is really important to pause for a second before you go breaking any rules of mathematics. ...

Answered by Tim H. Further Mathematics tutor
2061 Views

How can you divide an algebraic expression by another algebraic expression?

I would begin the session with checking a basic understanding of the methods of long division, as these will not have been taught very recently. Many students will have been using short division, as it is...

Answered by Jane H. Further Mathematics tutor
2525 Views

Use algebra to find the set of values of x for which mod(3x^2 - 19x + 20) < 2x + 2.

The initial quadratic can be either positive or negative so we must solve for both possibilities.

Solving for positive:

3x^2 - 19x + 20 < 2x + 2    =    3x^2 - 21x + 18 < 0

...
Answered by James M. Further Mathematics tutor
10103 Views

z = 4 /(1+ i) Find, in the form a + i b where a, b belong to R, (a) z, (b) z^2. Given that z is a complex root of the quadratic equation x^2 + px + q = 0, where p and q are real integers, (c) find the value of p and the value of q.

a) Need to multiply with conjugate to bring z to form a+ib. => z= z * (1-i)/(1-i) = (4-4i) / 2 = 2-2i

b) z^2 = (2-2i)^2 = 4-8i+4 i^2 = 4-8i-4 = 8i

since z is root of x^2+px+q=0 then z* (c...

Answered by Harry P. Further Mathematics tutor
5660 Views

Show that (n^2) + (n+1)^2 + (n+2)^2 = 3n^2 + 6n + 5, Hence show that the sum of 3 consecutive square numbers is always 2 away from a multiple of 3.

Expanding out the Brackets: (n2)+ (n2 + n + n + 1) + (n2 + 2n + 2n +4) = (n2) + (n2+2n+1) + (n2+4n+4) =3n2 + 6n +5 Using this r...

Answered by James C. Further Mathematics tutor
2475 Views

We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences