Top answers

Further Mathematics
All levels

Express sin(5theta) in terms of sin(theta) and powers of sin(theta) only.

Consider the expression (cos(theta) + i*sin(theta))5 . (Where theta a real parameter).By De Moirve's theorem, we know this expression is equivalent to cos(5theta) + i sin(5theta).We can also ap...

Answered by Peter F. Further Mathematics tutor
4155 Views

A mass m=1kg, initially at rest and with x=10mm, is connected to a damper with stiffness k=24N/mm and damping constant c=0.2Ns/mm. Given that the differential equation of the system is given by d^2x/dt^2+(dx/dt *c/m)+kx/m=0, find the particular solution.

The system is described by a homogeneous, second order differential equation d2x/dt2 +(dx/dt * c/m) + kx/m =0. First, substitute the known constants (m,k,c) to get d2x/dt<...

Answered by Christodoulos K. Further Mathematics tutor
2144 Views

Find the eigenvalues and eigenvectors of the following 3x3 matrix (reading left to right, top to bottom): (1 0 2 3 1 1 2 0 1)

The eigenvalues are given by the characteristic equation (1-x)((1-x)^2-4)=0, which gives the values x=1, x=-1 and x=3 . These eigenvalues correspond to the eigenvectors (0, 1, 0), (1, -1, -1) and (1, -...

Answered by Joshua P. Further Mathematics tutor
1797 Views

Find the general solution to: d^(2)x/dt^(2) + 7 dx/dt + 12x = 2e^(-t)

"General Solution = Complimentary Function + Particular Integral"AE: m2 + 7m + 12 = 0 solve for m(m+3)=0m = -4 or -3Hence the Complimentary Function = Ae-4t

Answered by Edward O. Further Mathematics tutor
2331 Views

Find the stationary points of the function z = 3x(x+y)3 - x3 + 24x

z = 3x(x+y)3 - x3 + 24xDifferentiating partially with respect to x and with respect to y:∂z/∂x = 3(x+y)3 + 9x(x+y)2 - 3x2 + 24∂z/∂y = 9x(x+y)2<...

Answered by Harvey T. Further Mathematics tutor
1820 Views

We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences