Top answers

Maths
All levels

The curve C has equation y=(2x-3)^5, the point P lies on C and has coordinates (w, – 32), find (a) the value of w and (b) the equation of the tangent to C at the point P in the form y=mx+c , where m and c are constants.

(a) The curve is defined by y=(2x-3)^5. To find x=w when y=-32, we must substitute these values into the equation C and re-arrange to find w. -32=(2w-3)^5. First we must remove the power of 5 by doing pow...

JP
Answered by Jordan P. Maths tutor
11989 Views

The equation of the line L1 is y = 3x – 2. The equation of the line L2 is 3y – 9x + 5 = 0. Show that these two lines are parallel.

The equation of a straight line is usually given in the form y = mx + c. To prove that two lines are parallel we will need to show that both lines have the same gradient. The gradient of a line is the slo...

TK
Answered by Tanya K. Maths tutor
4211 Views

Find the volume of revolution when the curve defined by y=xe^(2x) is rotated 2*pi radians about the x-axis between x=0 and x=1

This is a standard question that may be found in a C4 mathematics paper. Students should use knowledge of the volume of revolution formula V = piint_{a}^{b} y2dx to find the expression V =...

HS
Answered by Hanish S. Maths tutor
3391 Views

How should I approach a proof by induction question?

Proof by induction is a powerful proof technique that can be used to prove a certain property and is a common question on the IB exams. Consider for instance the problem "Prove that sinx + sin3x +......

AR
Answered by Aditya R. Maths tutor
1348 Views

find the coordinates of the turning points of the curve y = 2x^4-4x^3+3, and determine the nature of these points

To begin, we must first use the fact that turning points of a graph occur at points where the gradient is equal to zero, in other words, points where dy/dx =0. Differentiating the equation with and settin...

JN
Answered by Jenny N. Maths tutor
6934 Views

We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning