Top answers

Maths
A Level

A hollow sphere of radius r is being filled with water. The surface area of a hemisphere is 3pi*r^2. Question: When the water is at height r, and filling at a rate of 4cm^3s^-1, what is dS/dT?

By the chain rule ds/dt = ds/dr * dr/dv * dv/t. At a height of r, the water fills a hemisphere. So ds/dr = 6pir. dr/dv = 1/(dv/dr), so we need to find dv/dr. Students should have the formula for the v...

Answered by Henry B. Maths tutor
5330 Views

Solve the equation 5^(2x) - 12(5^x) + 35 = 0

The first step to solving this is equation is to notice that the equation is of a similar to the form of a quadratic equation: ay^2 + by + c  = 0 where a, b and c are constants. Next we introduce a new va...

Answered by Jacob G. Maths tutor
8863 Views

Differentiate with respect to x: y = ln(x^2+4*x+2).

Let u = x2+4x+2 so y = ln(u).

Then dy/du = 1/u and du/dx = 2x+4.

Using the chain rule we have:

dy/dx = (dy/du)*(du/dx)

= (1/u)*(2x+4)

= (2x+4)/(x2+...

Answered by Okim L. Maths tutor
4209 Views

Prove that sec^2(θ) + cosec^2(θ) = sec^2(θ) * cosec^2(θ)

These problems can be tricky as they use unfamiliar trigonometric functions such as secant and cosecant. It is much easier to approach these problems by replacing these trigonometric functions with more f...

Answered by Hugh R. Maths tutor
10455 Views

find dy/dx at t, where t=2, x=t^3+t and y=t^2+1

We know from simple fraction rules that dy/dx=(dy/dt)/(dx/dt). dy/dt=2t, dx/dt=3t^2+1. Therefore, dy/dx=2x2/12+1=4/13

Answered by Niamh O. Maths tutor
5594 Views

We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences