Over a million students use our free study notes to help them with their homework
We will be using the quotient rule, although the product rule is also usable and can be run through if the student wishes. Firstly, define u = 8x, v = x-8 for simplicity. Then clearly u' = 8, v' = 1, and ...
For this we must use the chain rule. We start by defining x3 as a new variable, u = x3 Can then rewrite the expression as y = sin(u) Chain rule tells us that dy/dx = (dy/du)(du/dx) W...
As both equations are equal to y, we can combine them to create a single equation in terms of x: x^3 - x^2 -5X + 7 = x + 7. Shift the equation so the left hand side is equal to 0 on the right: x^3 - x^2 -...
First, differentiate and put the derivative equal to zero. dy/dx=6x^2-30x+24=0. Solve this equation to get that x=4 and x=1. Substitute these values into the original equation to get the correspo...
From the definition of a derivative: f'(x) = lim h->0 ((f(x+h) - f(x)) / h) Let f(x) = x^n --> d\dx x^n = lim h->0 (((x+h)^n - x^n) / h) By binomial expansion, (x+h)^n = x^n + nhx^(n-1) + n(n-1)h...
←
447
448
449
450
451
→
Internet Safety
Payment Security
Cyber
Essentials