Top answers

Maths
A Level

differentiate ln( x^2 )

ln is the natural log. The thing to remember with differentiating natural log is the simple formula U'/U. The U is whatever is in the brackets. This means we differentiate X^2 and divide it by X^2. X^2 ...

Answered by Edward T. Maths tutor
10372 Views

Find dy/dx where y= x^3(sin(x))

To differentiate y, we must used the product rule.The product rule is d/dx [f(x)g(x)] = f'(x)g(x) + g'(x)f(x)So here, we let f(x)= x^3 and g(x)= sin(x)Then, f'(x)= 3x^2 and g'(x) = cos(x)Then substituting...

Answered by Kajal C. Maths tutor
7601 Views

Find dy/dx when y = x(4x + 1)^1/2

Here we can use the product rule where dy/dx = v du/dx + u dv/dx.We let u = x and v = (4x + 1)1/2 which means we get du/dx = 1 and by using the chain rule we get dv/dx = 1/2(4x + 1)-1/2

Answered by Rebecca N. Maths tutor
5155 Views

Express '6cos(2x) +sin(x)' in terms of sin(x).

6cos(2x) +sin(x).Using the double angle formula for cosine (or otherwise), cos(2x) = cos(x)cos(x) - sin(x)sin(x) .cos(2x) = cos^2(x) - sin^2(x) .Hence, 6cos(2x) +sin(x) = 6(cos^2(x) - sin...

Answered by Robbie M. Maths tutor
4540 Views

Find the x and y coordinates of the turning points of the curve 'y = x^3 - 3x^2 +4'. Identify each turning point as either a maximum or a minimum.

The first part of the problem is solved by differentiating once and equating this to zero:
y = x^3 - 3x^2 +4 .dy/dx = 3x^2 - 6x .dy/dx = x(3x - 6...

Answered by Robbie M. Maths tutor
11602 Views

We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences