Top answers

Maths
A Level

At each point P of a curve for which x > 0 the tangent cuts the y-axis at T, and N is the foot of the perpendicular from P to the y-axis. If T is always 1 unit below N and the curve passes through the point (1,0), find the Cartesian equation of the curve.

When faced with a problem like this, it is always a good idea to draw a rough sketch of what might be going on. With the help of a diagram, we notice that PNT is a right angled triangle w...

Answered by Siddharth P. Maths tutor
2357 Views

A curve C has equation: x^3+2xy-x-y^3-20=0. Find dy/dx in terms of x and y.

First we need to make sure we understand implicit differentiation. As we are differentiating with respect to x, y has to be treated differently, this is because it could be anything from a constant to a f...

Answered by Martin M. Maths tutor
5054 Views

Find the inverse of the function g(x)=(4+3x)/(5-x)

For simplicity first rewrite as y=(4+3x)/(5-x). Now swap any x for a y, and any y for an x. This leaves the equation x=(4+3y)/(5-y). Our goal is to make y the subject of the formula. Multiply both sides b...

Answered by Martin M. Maths tutor
3360 Views

The equation of curve C is 3x^2 + xy + y^2 - 4x - 6y + 7 = 0. Use implicit differentiation to find dy/dx in terms of x and y.

6x + xdy/dx + y + 2ydy/dx - 4 - 6dy/dx = 0xdy/dx + 2ydy/dx - 6dy/dx = 4 - 6x - ydy/dx (x + 2y - 6) = 4 - 6x - ydy/dx = (4-6x-y)/x+2y-6)

Answered by Maths tutor
3184 Views

Given that y =2x^3 + 3/(x^2), find a) dy/dx and b) the integral of y

a) It is useful to rewrite the equation using power rules, so we get y = 2x3 + 3x-2Now we can simply use the differentiation rules where we multiply the coefficient (number before x)...

Answered by Balint S. Maths tutor
6299 Views

We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences