Top answers

Further Mathematics
GCSE

A curve is mapped by the equation y = 3x^3 + ax^2 + bx, where a is a constant. The value of dy/dx at x = 2 is double that of dy/dx at x = 1. A turning point occurs when x = -1. Find the values of a and b.

dy/dx = 9x^2 + 2ax + b

x = 2, dy/dx = 9(2)^2 + 2a(2) + b = 36 + 4a + b

x = 1, dy/dx = 9(1)^2 + 2a(1) + b = 9 + 2a + b

Answered by Alistair R. Further Mathematics tutor
1896 Views

How can you divide an algebraic expression by another algebraic expression?

I would begin the session with checking a basic understanding of the methods of long division, as these will not have been taught very recently. Many students will have been using short division, as it is...

Answered by Jane H. Further Mathematics tutor
2301 Views

Show that (n^2) + (n+1)^2 + (n+2)^2 = 3n^2 + 6n + 5, Hence show that the sum of 3 consecutive square numbers is always 2 away from a multiple of 3.

Expanding out the Brackets: (n2)+ (n2 + n + n + 1) + (n2 + 2n + 2n +4) = (n2) + (n2+2n+1) + (n2+4n+4) =3n2 + 6n +5 Using this r...

Answered by James C. Further Mathematics tutor
2300 Views

Consider the Matrix M (below). Find the determiannt of the matrix M by using; (a) cofactor expansion along the first row, (b) cofactor expansion along the second column

Matrix M is

-2 1 -4

1 -1  5

3  0  2

Let A be a square nxn matrix. Then, for each entry Aij (where 1 </= i < n, 1 </= j < n), the minor of Aij is A(^i;^j), the deter...

Answered by Evi T. Further Mathematics tutor
2539 Views

Can you explain induction and go through an example?

Induction is a method that can be used to prove that a mathematical statement holds for possitive integers, n. It usually consists of four steps, as follows:  1) Basis: Show that the statement to be prove...

Answered by Adamos S. Further Mathematics tutor
2311 Views

We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences