Top answers

Further Mathematics
All levels

Point A lies on the curve: y=x^2+5*x+8. The x-coordinate of A is -4. What is the equation of the normal to the curve at A?

First we will find the gradient of the tangent of the curve at A. So first, we differentiate y with respect to x. We get that dy/dx=2x+5. We can plug in x=-4 to find the gradient of the tangent at A. ...

Answered by Aaron G. Further Mathematics tutor
6496 Views

Find the coordinates of the minimum/maximum of the curve: Y = 8X - 2X^2 - 9, and determine whether it is a maximum or a minimum.

First we need to find the derivative of the curve:dy/dx = 8 - 4X.We can then find the X coordinate by setting this equal to zero: 0 = 8 - 4X, X = 2.Plugging this back into the original equation gives us t...

Answered by Michael L. Further Mathematics tutor
1976 Views

Find the x and y coordinates of the minimum of the following equation: y = x^2 - 14x + 55.

We can see that the quadratic function will be U-shaped, as the quadratic term is with a positive sign. Therefore, the absolute extreme of the function will be a minimum. Step 1: Differentiate to find the...

Answered by Ferenc Dániel Z. Further Mathematics tutor
1556 Views

Can you explain rationalising surds?

Rationalising surds is the process of removing a square root from the bottom of a fraction. The way we do it is by using a little trick involving the difference of two squares.The difference of two square...

Answered by Harry A. Further Mathematics tutor
2432 Views

A ladder of length 2L and mass m is placed leaning against a wall, making an angle t with the floor. The coefficient of friction between all surfaces is c. At what angle t does the ladder begin to slip?

Firstly draw a free body diagram of the ladder, showing its weight and the contact forces at either end. We'll call end A the top end and end B the bottom end.
The next thing to do is to e...

Answered by Theo B. Further Mathematics tutor
3497 Views

We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences