Top answers

Maths
A Level

For a curve of gradient dy/dx = (2/(x^2))-x/4, determine a) d^2y/dx^2 b) the stationary point where y=5/2 c) whether this is a maximum or minmum point and d) the equation of the curve

a) Differentiating gives d2y/dx2=-4x-3-1/4

b) Let dy/dx=0 and rearrange to find x=2

c) Inserting x=2 into d2y/dx2=-4x-3-1/4 ...

Answered by Katie M. Maths tutor
5320 Views

Find ∫ ( 2x^4 - 4x^(-0.5) + 3 ) dx

When integrating, you need to add one to the power and divide the term by the power. We will consider each term individually, 2x4 will become (2x4+1)/(4+1) = (2x5)/5, -4x<...

Answered by Rebecca M. Maths tutor
6627 Views

A curve has equation y = f(x) and passes through the point (4,22). Given that f'(x) = 3x^2 - 3x^(1/2) - 7 use intergration to find f(x).

As f '(x) is the differential of f(x) we have to first integrate f '(x). To do this we take each term individually and integrate it. So starting with 3x2, to integrate a simple function of x li...

Answered by Jonathan O. Maths tutor
7047 Views

how do you do binomial expansion when the power is a negative

There is a simple equation, similar to the normal binomial expansion, thats easy to remember once youve used it a few times.

(1+x)n=1+nx+{[n(n-1)]/2!}x2+{[n(n-1)(n-2)]/3!}x

Answered by Sarah M. Maths tutor
8339 Views

Why does differentiation give us the results that it does?

A quick analysis here is based on the fact that y=(x2). A big change is worked out between two points. The gradient between x=1 and x=2 is equal to 3. BUT we know the gradient is constantly cha...

Answered by Alexander A. Maths tutor
3379 Views

We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences