Top answers

Maths
A Level

Solve the following pair of simultaneous equations: 2x - y = 7 and 4x + y = 23

2x - y = 74x + y = 23In this pair of simultaneous equations, we have two unknowns. We can solve them simultaneously using substitution or elimination, but I will go through the elimination method. I wish ...

Answered by Lauren R. Maths tutor
4519 Views

Differentiate cos(2x^3)/3x

Using quotient rule y = u/v - dy/dx = (v.du/dx - u.dv/dx)/v2.u = cos(2x3) , a = 2x3. du/da = -sin(a), da/dx = 6x2. From chain rule, we know that du/dx = du/da ....

Answered by Charlie W. Maths tutor
8028 Views

Differentiate x^2 ln(3x) with respect to x

This question requires the use of differentiation by product rule. First differentiate the first term, whilst keeping the second term the same, i.e. we get 2xln(3x). Secondly we keep the first term the sa...

Answered by Ricky F. Maths tutor
11330 Views

The line y = (a^2)x and the curve y = x(b − x)^2, where 0<a<b , intersect at the origin O and at points P and Q. Find the coordinates of P and Q, where P<Q, and sketch the line and the curve on the same axes. Find the tangent at the point P.

Firstly, for the points of intersection we need to equate the two expressions for y. Since we know that they intersect at the origin, we can immediately cancel the x values and then solve the quadratic fo...

Answered by Josh B. Maths tutor
6053 Views

Find the equation of the tangent to the curve y = 4x^2 (x+3)^5 at the point (-1, 128).

y = 4x2(x+3)5 . Use the product rule to find the first derivative of the curve, 8x(x+3)5 + 20x2(x+3)4 , and substitute x = -1 to find the gradient at...

Answered by Jack G. Maths tutor
3033 Views

We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences