Top answers

Maths
GCSE

The equation of line A is (x)^2 + 11x + 12 = y - 4, while the equation of line B is x - 6 = y + 2. Find the co-ordinate(s) of the point at which lines A and B intersect.

While this question may seem complicated, this question is simply asking you to solve the equations of these two lines as simultaneous equations. Line A: x2 + 11x + 12 = y - 4 --> x

AA
Answered by Ann A. Maths tutor
2966 Views

Solve the following quadratic equation: 2x^2 - 5x - 3 = 0

Firstly, we need to factorise the equation:We can see (and are told) that the equation is quadratic and is therefore of the form ax^2 + bx + c. In our case, a=2, b=-5 and c=-3. We therefore expect two pai...

JA
Answered by Jacob A. Maths tutor
4123 Views

Solve the quadratic equation 4x^2 - 5x -6 = 0

First factorise the equation : you need to find two value which multiply to give (4 x -6) = -24 and add to equal -5,these two numbers are -8 and 3. Then write the equation as follows:4x2 - 8x...

KS
Answered by Katie S. Maths tutor
7430 Views

Expand and simplify 4x(x+3) - (2x-3)2

When dealing with such a question, an expansion question, the first part of the equation to look at is the brackets.Looking at the question above, one can see that there are two pairs of brackets - it wou...

TO
Answered by Tofi O. Maths tutor
8770 Views

Solve the simultaneous equations: 2x+2y = 10 and 7x + 4y = 26

The first step with any simultaneous equation is to cancel out one of the variables. Here, 2y is a factor of 4y (it fits into 4y twice) so we can multiply the 1st equation by 2 to give us 4x+4y = 20.This ...

SM
Answered by Sylvia M. Maths tutor
4753 Views

We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning